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Non-Abelian magnetic monopoles Kei-Ichi Kondo

1. Introduction

The dual superconductor picture proposed long ago [1] is believed to be a promising mechan-
ics for quark confinement. For this mechanism to work, however, magnetic monopoles and their
condensation are indispensable to cause the dual Meissner effect leading to the linear potential
between quark and antiquark, namely, area law of the Wilson loop average. The Abelian projec-
tion method proposed by ’t Hooft [2] can be used to introduce such magnetic monopoles into the
pure Yang-Mills theory even without matter fields. Indeed, numerical evidences supporting the
dual superconductor picture resulting from such magnetic monopoles have been accumulated since
1990 in pure SU(2) Yang-Mills theory [3, 4, 5]. However,the Abelian projection method explicitly
breaks both the local gauge symmetry and the global color symmetryby partial gauge fixing from
an original non-Abelian gauge groupG= SU(N) to the maximal torus subgroup,H = U(1)N−1.
Moreover, the Abelian dominance [3] and magnetic monopole dominance [4] were observed only
in a special class of gauges, e.g., the maximally Abelian (MA) gauge and Laplacian Abelian (LA)
gauge, realizing the idea of Abelian projection.

For G = SU(2), we have already succeeded to settle the issue of gauge (in)dependence by
introducing a gauge-invariant magnetic monopole in a gaugeindependent way, based on another
method: a non-Abelian Stokes theorem for the Wilson loop operator [6, 7] and a new reformulation
of Yang-Mills theory rewritten in terms of new field variables [8, 9, 10] and [11, 12, 13], elaborating
the technique proposed by Cho [14] and Duan and Ge [15] independently, and later readdressed by
Faddeev and Niemi [16].

For G = SU(N), N ≥ 3, there are no inevitable reasons why degrees of freedom associated
with the maximal torus subgroup should be most dominant for quark confinement. In this case, the
problem is not settled yet. In this talk, we give a theoretical framework for describingnon-Abelian
dual superconductivityin D-dimensionalSU(N) Yang-Mills theory, which should be compared
with the conventional AbelianU(1)N−1 dual superconductivity inSU(N) Yang-Mills theory, hy-
pothesized by Abelian projection. We demonstrate thatan effective low-energy description for
quarks in the fundamental representation(abbreviated to rep. hereafter)can be given by a set of
non-Abelian restricted field variablesand thatnon-Abelian U(N− 1) magnetic monopolesin the
sense of Goddard–Nuyts–Olive–Weinberg [17]are the most dominant topological configurations
for quark confinementas conjectured in [18, 19].

2. Wilson loop and gauge-inv. magnetic monopole

A version of a non-Abelian Stokes theorem (NAST) for the Wilson loop operator originally
invented by Diakonov and Petrov [6] forG= SU(2) was proved to hold [7] and was extended to
G = SU(N) [18, 20] in a unified way [20] as a path-integral rep. by makinguse of a coherent
state for the Lie group. For the Lie algebrasu(N)-valued Yang-Mills fieldAµ(x) = A A

µ (x)TA with
su(N) generatorsTA (A= 1, · · · ,N2−1), the NAST enables one to rewrite a non-Abelian Wilson
loop operator

WC[A ] :=tr

[

P exp

{

igYM

∮

C
dxµ

Aµ(x)

}]

/tr(1), (2.1)
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in terms of an Abelian-like potentialAµ as

WC[A ] =

∫

dµC(g)exp

[

igYM

∮

C
A

]

, (2.2)

wheregYM is the Yang-Mills coupling constant,dµC(g) := ∏x∈C dµ(gx) with an invariant measure
dµ on G normalized as

∫

dµ(gx) = 1, gx is an element of a gauge groupG (more precisely, rep.
DR(gx) of G), and the one-formA := Aµ(x)dxµ is defined by

Aµ(x) = tr{ρ [g†
xAµ(x)gx+ ig−1

YM g†
x∂µgx]}, gx ∈ G. (2.3)

Hereρ is defined asρ := |Λ〉〈Λ| using a reference state (highest or lowest weight state of the rep.)
|Λ〉 making a rep. of the Wilson loop we consider. Note that tr(ρ) = 〈Λ|Λ〉 = 1 follows from
the normalization of|Λ〉. Then it is rewritten into the surface-integral form using ausual Stokes
theorem:

WC[A ] =

∫

dµΣ(g)exp

[

igYM

∫

Σ:∂Σ=C
F

]

, (2.4)

wheredµΣ(g) := ∏x∈Σ dµ(gx), with an invariant measuredµ on G normalized as
∫

dµ(gx) = 1,
gx is an element of a gauge groupG (more precisely, rep.DR(gx) of G), the two-formF :=
dA= 1

2Fµν(x)dxµ ∧dxν is defined from the one-formA := Aµ(x)dxµ , Aµ(x) = tr{ρ [g†
xAµ(x)gx+

ig−1
YM g†

x∂µgx]}, by

Fµν(x) =
√

2(N−1)/N[Gµν(x)+ ig−1
YM tr{ρg†

x[∂µ ,∂ν ]gx}], (2.5)

with the field strengthGµν defined by

Gµν(x) := ∂µ tr{n(x)Aν (x)}−∂ν tr{n(x)Aµ (x)}

+
2(N−1)

N
ig−1

YM tr{n(x)[∂µn(x),∂ν n(x)]}, (2.6)

and a normalized traceless fieldn(x) called the color field

n(x) :=
√

N/[2(N−1)]gx [ρ −111/tr(111)]g†
x. (2.7)

Hereρ is defined asρ := |Λ〉〈Λ| using a reference state (highest or lowest weight state of the rep.)
|Λ〉 making a rep. of the Wilson loop we consider. Note that tr(ρ) = 〈Λ|Λ〉 = 1 follows from the
normalization of|Λ〉.

Finally, the Wilson loop operator in the fundamental rep. ofSU(N) reads [20]

WC[A ] =

∫

dµΣ(g)exp{igYM (k,ΞΣ)+ igYM ( j,NΣ)} ,

k := δ ∗ f = ∗d f, j := δ f , f :=
√

2(N−1)/NG ,

ΞΣ := ∗dΘΣ∆−1 = δ ∗ΘΣ∆−1, NΣ := δΘΣ∆−1, (2.8)

where two conserved currents, “magnetic-monopole current” k and “electric current”j, are intro-
duced,∆ := dδ +δd is theD-dimensional Laplacian, andΘ is an antisymmetric tensor of rank two
called the vorticity tensor:Θµν

Σ (x) :=
∫

Σ d2Sµν(x(σ))δ D(x− x(σ)), which has the support on the
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surfaceΣ (with the surface elementdSµν(x(σ))) whose boundary is the loopC. Incidentally, the
last partig−1

YM tr{ρg†
x[∂µ ,∂ν ]gx} in F corresponds to the Dirac string [23, 24], which is not gauge

invariant and does not contribute to the Wilson loop in the end.

ForSU(3) in the fundamental rep., the lowest-weight state〈Λ|= (0,0,1) leads to

n(x) = gx(λ8/2)g†
x ∈ SU(3)/[SU(2)×U(1)] ≃CP2, (2.9)

with the Gell-Mann matrixλ8 := diag.(1,1,−2)/
√

3, while forSU(2), 〈Λ|= (0,1) yields

n(x) = gx(σ3/2)g†
x ∈ SU(2)/U(1) ≃ S2 ≃CP1, (2.10)

with the Pauli matrixσ3 := diag.(1,−1). The existence of magnetic monopole can be seen by a
nontrivial Homotopy class of the mapn from S2 to the target space of the color fieldn [18]: For
SU(3),

π2(SU(3)/[SU(2)×U(1)]) = π1(SU(2)×U(1))

= π1(U(1)) = Z, (2.11)

while for SU(2)

π2(SU(2)/U(1)) = π1(U(1)) = Z. (2.12)

For SU(3), the magnetic charge of the non-Abelian magnetic monopole obeys the quantization
condition [20]:

Qm :=
∫

d3xk0 = 2π
√

3g−1
YM n, n∈ Z. (2.13)

The NAST shows thatthe SU(3) Wilson loop operator in the fundamental rep. detects the inherent
U(2) magnetic monopole which is SU(3) gauge invariant. The rep. can be classified by itsstability
groupH̃ of G [18, 20]. For the fundamental rep. ofSU(3), the stability group isU(2). Therefore,
the non-AbelianU(2)≃ SU(2)×U(1) magnetic monopole follows from̃H = SU(2)1,2,3×U(1)8,
while the AbelianU(1)×U(1) magnetic monopole comes from̃H =U(1)3×U(1)8. The adjoint
rep. belongs to the latter case. The former case occurs only when the weight vector of the rep. is
orthogonal to some of root vectors. The fundamental rep. is indeed this case. ForSU(2), such a
difference does not exist andU(1) magnetic monopoles appear, sinceH̃ is alwaysU(1) for any
rep.. ForSU(3), our result is different from Abelian projection: two independentU(1) magnetic
monopoles appear for any rep., since

π2(SU(3)/U(1)×U(1)) = π1(U(1)×U(1)) = Z
2. (2.14)

3. Reformulating Yang-Mills theory using new variables

For SU(3), two options are possible, maximal forH̃ = U(1)2 [25, 26] and minimal forH̃ =

U(2) [21]. In the minimal one which gives the optimal descriptionof quark in the fundamental
rep., we consider the decomposition

Aµ(x) = Vµ(x)+Xµ(x), (3.1)
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such that (a)Vµ alone reproduces the Wilson loop operator:

WC[A ] =WC[V ], (3.2)

and that (b) the field strengthFµν [V ] := ∂µVν − ∂νVµ − igYM [Vµ ,Vν ] in the color directionnnn
agrees withGµν :

Gµν(x) = tr{nnn(x)Fµν [V ](x)}. (3.3)

The fieldsVµ(x) andXµ(x) are determined by solving defining equations, once the colorfield nnn(x)
is given:
(I) nnn(x) is a covariant constant in the backgroundVµ(x):

0= Dµ [V ]nnn(x) := ∂µnnn(x)− igYM [Vµ(x),nnn(x)], (3.4)

(II) X µ(x) does not have thẽH-commutative part:

X
µ(x)H̃ :=

(

1−2
N−1

N
[nnn, [nnn, ·]]

)

X
µ(x) = 0. (3.5)

Indeed, (II) guarantees (a) and (I) guarantees (b). This is also checked by using the explicit form
of decomposed fields which are uniquely fixed:

Xµ =− ig−1
YM

2(N−1)
N

[nnn,Dµ [A ]nnn] ∈ L (G/H̃),

Vµ =Cµ +Bµ ,

Cµ =Aµ −
2(N−1)

N
[nnn, [nnn,Aµ ]] ∈ L (H̃),

Bµ =ig−1
YM

2(N−1)
N

[nnn,∂µnnn] ∈ L (G/H̃). (3.6)

In our reformulation,Vµ(x) andXµ(x) must be expressed in terms ofAµ(x). Therefore, we
must give a procedure of determiningnnn from Aµ , thereby, all the new variablesCµ , Xµ andnnn are
obtained fromAµ :

A
A

µ =⇒ (nnnβ ,C k
ν ,X

b
ν ). (3.7)

We begin with counting degrees of freedom:Aµ ∈ L (G) = su(N) means #[A A
µ ] = D ·dimG =

D(N2− 1), Cµ ∈ L (H̃) = u(N− 1) means #[C k
µ ] = D ·dimH̃ = D(N− 1)2 andXµ ∈ L (G/H̃)

means #[X b
µ ] =D ·dim(G/H̃) = 2D(N−1) andnnn∈L (G/H̃) means #[nnnβ ] = dim(G/H̃) = 2(N−

1). Thus, the new variables(nnnβ ,C k
ν ,X

b
ν ) have the 2(N−1) extra degrees of freedom, to be elimi-

nated to obtain the new theory equipollent to the original one. For this purpose, we impose 2(N−1)
constraintsχχχ = 0, which we call the reduction condition. For example, minimize the functional

R[A ,nnn] :=
∫

dDx
1
2
(Dµ [A ]nnn)2, (3.8)

with respect to the enlarged gauge transformation:δAµ = Dµ [A ]ωωω , andδnnn= gi[θθθ ,nnn] = gi[θθθ⊥,nnn]
whereωωω ∈L (G) andθθθ⊥ ∈L (G/H̃). Then, we findδR[A ,nnn] = g

∫

dDx(θθθ⊥−ωωω⊥) · i[nnn,Dµ [A ]Dµ [A ]nnn],

5
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whereωωω⊥ denotes the component ofωωω in the directionL (G/H̃). The minimizationδR[A ,nnn] = 0
imposes no condition forωωω⊥ = θθθ⊥ (diagonal part ofG×G/H̃), while

χχχ [A ,nnn] := [nnn,Dµ [A ]Dµ [A ]nnn] = 0, (3.9)

is imposed forωωω⊥ 6= θθθ⊥ (off-diagonal part ofG×G/H̃). The number of constraint is #[χχχ ] =
dim(G×G/H̃)−dim(G) = dim(G/H̃) = 2(N−1) = #[hhhβ ] as desired. As a bonus, the color field
nnn(x) is determined by solving (4.2) for givenAµ(x). This completes the procedure.

The Wilson loop averageWC is defined by

WC =Z−1
YM

∫

DA
A

µ e−SYM [A ]WC[A ], (3.10)

with the partition functionZYM =
∫

DA A
µ e−SYM [A ] by omitting the gauge fixing to simplify the

expression. The pre-NAST (2.2) tells us that

WC = Z−1
YM

∫

dµC(g)DA
A

µ e−SYM [A ]eigYM
∮

C A. (3.11)

Inserting 1=
∫

Dnα ∏x δ (nnn(x)−gx(λ8/2)g†
x) yields

WC =Z−1
YM

∫

dµC(g)
∫

DA
A

µ Dnα δ (nnn(x)−gx(λ8/2)g†
x)

×e−SYM [A ]eigYM
∮

C A. (3.12)

Thus, in the reformulated theory in whichnβ (x), C k
ν (x), X

b
ν (x) areindependentfield variables,WC

is written

WC =Z̃−1
YM

∫

dµΣ(g)
∫

DC
k
ν DX

b
ν Dnβ δ (χ̃χχ)∆red

FPJ̃

×e−S̃YM [nnn,C ,X ]eigYM (k,ΞΣ)+igYM ( j,NΣ), (3.13)

where the Yang-Mills action is rewritten in terms of new variables using (3.1) and (3.6),S̃YM [nnn,C ,X ] =

SYM [A ] and the new partition function is introduced:Z̃YM =
∫

DC k
ν DX b

ν Dnβ δ (χ̃χχ)∆red
FPJ̃e−S̃YM [nnn,C ,X ].

It is shown [21] that the integration measureDA A
µ is finally transformed toDC k

ν DX b
ν Dnβ δ (χ̃χχ)∆red

FPJ̃,
where (i) the JacobiañJ is very simple,J̃= 1, [21] irrespective of the choice of reduction condition,
(ii) χχχ [A ,nnn] = 0 is rewritten in terms of new variables:̃χχχ := χ̃χχ [nnn,C ,X ] := Dµ [V ]Xµ , and (iii)
the associated Faddeev-Popov determinant∆red

FP is calculable using the BRST method, e.g.[9].

4. Numerical simulations

The SU(3) Yang-Mills theory can be reformulated in the continuum and on a lattice using new
variables. ForSU(3), two options are possible, maximal forH̃ =U(1)2 [25, 26] and minimal for
H̃ =U(2) [21]. In our reformulation, all the new variablesCµ , Xµ andn are obtained fromAµ :

A
A

µ =⇒ (nβ ,C k
ν ,X

b
ν ), (4.1)

once the color fieldn is determined by solving the reduction condition:

χχχ[A ,n] := [n,Dµ [A ]Dµ [A ]n] = 0, (4.2)

6
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On a four-dimensional Euclidean lattice, gauge field configurations{Ux,µ} are generated by
using the standard Wilson action and pseudo heat-bath method. For a given{Ux,µ}, color field
{nnnx} are determined by imposing a lattice version of reduction condition. Then new variables are
introduced by using the lattice version of change of variables [22].
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Figure 1: SU(3) quark-antiquark potential: (from above to below) full potentialVf (r), restricted partVa(r)
and magnetic–monopole partVm(r) at β = 6.0 on 244 (ε: lattice spacing).

Fig. 1 shows the fullSU(3) quark-antiquark potentialV(r) obtained from theSU(3) Wilson
loop average〈WC[A ]〉, the restricted partVa(r) from theV Wilson loop average〈WC[V ]〉, and
magnetic–monopole partVm(r) from 〈eigYM (k,ΞΣ)〉. They are gauge invariant quantities by construc-
tion. These results exhibit infraredV dominance in the string tension (85–90%) and non-Abelian
U(2) magnetic monopole dominance in the string tension (75%) in the gauge independent way.

To obtain correlation functions of field variables, we need to fix the gauge and we have adopted
the Landau gauge. Fig.2 shows two-point correlation functions of color field, indicating the global
SU(3) color symmetry preservation, no specific direction in color space:〈nA(0)nB(r)〉= δ ABD(r).
We have also checked that one-point functions vanish,〈nA(x)〉 =±0.002≃ 0.
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Figure 2: Color field correlators〈nA(0)nB(r)〉 (A,B= 1, · · · ,8) measured atβ = 6.2 on 244 lattice, using
500 configurations under the Landau gauge. (Left)A= B, (Right)A 6= B.
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〈X A

µ (0)X A
µ (r)〉.

Fig. 3 shows correlators of new fieldsV , X , and original fieldsA , indicating theinfrared
dominanceof restricted correlation functions in the sense that the variableV is dominant in the long
distance, while the correlator ofSU(3)/U(2) variableX decreases quickly. ForX , at least, we
can introduce a gauge-invariant mass term1

2M2
XX A

µ X A
µ , sinceX transforms like an adjoint matter

field under the gauge transformation. The naively estimated“mass" ofX is MX = 2.409
√σphys=

1.1 GeV. This value should be compared with the result in MA gauge. The details of numerical
results will be given in a subsequent paper. These results give numerical evidences for non-Abelian
dual superconductivity as a mechanism for quark confinementin SU(3) Yang-Mills theory.

5. Conclusion

We have shown: (i) TheSU(N) Wilson loop operator can be rewritten in terms of a pair of
gauge-invariant magnetic-monopole currentk ((D−3)-form) and the associated geometric object
defined from the Wilson surfaceΣ bounding the Wilson loopC, and another pair of an electric
current j (one-form independently ofD) and the associated topological object, which follows from
a non-Abelian Stokes theorem for the Wilson loop operator [20]. (ii) The SU(N) Yang-Mills the-
ory can be reformulated in terms of new field variables obtained by change of variables from the
original Yang-Mills gauge fieldA A

µ (x) [21], so that it gives an optimal description for the non-
Abelian magnetic monopole defined from theSU(N) Wilson loop operator in the fundamental rep.
of quarks. (iii) A lattice version of the reformulated Yang-Mills theory can be constructed [22].
Numerical simulations of the latticeSU(3) Yang-Mills theory give numerical evidences that the
restricted field variables become dominant in the infrared for correlation functions and the string
tension (infrared restricted non-Abelian dominance) and that theU(2) magnetic monopole gives a
most dominant contribution to the string tension obtained from SU(3) Wilson loop average (non-
Abelian magnetic monopole dominance). See [27] for more informations.
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